中文字幕人成乱码熟女香港-中文字幕亚洲综合久久2020-国产免费无码av片在线观看不卡-人妻熟妇乱又伦精品hd-在线精品视频一区二区三四

您的位置: 首頁 > 技術文章 > 高光譜技術在皮膚檢測中的實現:構建高效系統與魯棒模型

高光譜技術在皮膚檢測中的實現:構建高效系統與魯棒模型

更新時間:2025-06-24瀏覽:127次

Implementation of Hyperspectral Technology in Skin Detection: Building Efficient Systems and Robust Models

在上一篇文章中,我們探討了高光譜成像技術在皮膚檢測中的潛力,而本文將關注如何實現這一技術的實現。

In the previous article, we explored the potential of hyperspectral imaging technology in skin detection. This article will focus on its practical implementation.


高光譜技術在皮膚檢測中的實現:構建高效系統與魯棒模型

皮膚樣品的可見光和近紅外光譜 / Visible and Near-Infrared Spectra of Skin Samples


為實現高光譜成像技術的有效應用,多個研究團隊搭建了各具特色的高光譜成像系統。其中一個西班牙團隊,搭建了不同的系統。他們使用398.08~995.20nm的高光譜相機,配備了電動底座和鹵素光源,以優化成像質量,確保穩定的數據采集。

該團隊還搭建了,采用900~1700nm的光譜范圍,搭建系統時特別關注患者的舒適度,設計了支撐裝置,讓患者在拍攝過程中能夠穩定休息。此裝置由金屬梁和多個3D打印支撐平臺構成,提供了柔軟且適應不同部位的支持。

To effectively apply hyperspectral imaging, multiple research teams have developed specialized systems. One Spanish team, for instance, constructed distinct setups. They employed a hyperspectral camera covering 398.08–995.20 nm, equipped with a motorized stage and halogen lighting to optimize imaging quality and ensure stable data acquisition.

The team also developed another system operating in the 900–1700 nm range, prioritizing patient comfort by incorporating a support device that allowed subjects to remain stable during imaging. This setup consisted of metal beams and multiple 3D-printed support platforms, providing soft and adaptable positioning for different body areas.

高光譜技術在皮膚檢測中的實現:構建高效系統與魯棒模型

可見光系統 / the visible light system


高光譜技術在皮膚檢測中的實現:構建高效系統與魯棒模型

近紅外系統。(a)本研究中為數據采集目的而構建的高光譜推掃平臺。(b)在采集過程中幫助患者感到舒適的不同支持平臺。

the near-infrared system. (a) The hyperspectral push-broom platform constructed for data collection in this study. (b) Various support platforms designed to enhance patient comfort during acquisition.


在數據分析方法上,近年來的研究主要集中在機器學習模型的應用。傳統的簡單圖像處理方法雖然實現直接,但在應對復雜皮膚病變時,其效果往往不能令人滿意。機器學習模型,為皮膚檢測的準確性提供了支持,這些模型具備良好的泛化能力,能夠在多種條件下有效識別不同類型的皮膚病變。

Recent research has increasingly focused on machine learning models for data analysis. While traditional image processing methods are straightforward, their performance in detecting complex skin lesions is often unsatisfactory. Machine learning models, however, offer superior accuracy and generalization, enabling reliable identification of diverse skin lesions under varying conditions.

在一個研究中,科研人員對不同的分類和分割方法進行了比較。這些方法各有優缺點,支持向量機在高維空間中表現良好,隨機森林對過擬合有一定的魯棒性,K均值聚類適用于簡單的分類任務,而主成分分析則有效進行降維,保留數據中的重要特征。這具體取決于組織和目標病變的類型。

In one study, researchers compared different classification and segmentation approaches, each with unique strengths:

·Support Vector Machines (SVM) excel in high-dimensional spaces.

·Random Forests demonstrate robustness against overfitting.

·K-means Clustering is suitable for simpler classification tasks.

·Principal Component Analysis (PCA) effectively reduces dimensionality while preserving critical features.

·The optimal method depends on tissue type and the target lesion.


高光譜技術在皮膚檢測中的實現:構建高效系統與魯棒模型

各類方法的比較(部分)/ Comparison of different methodologies (partial)


前面提到的西班牙團隊,該團隊利用近紅外高光譜成像技術,針對基底細胞癌(BCC)和皮膚鱗狀細胞癌(SCC)進行了檢測,強調使用魯棒特征統計方法來進行數據分析。該方法不僅提高了系統的穩定性,還確保在樣本中存在噪聲和異常值時,依舊能獲得較高的檢測準確性。

the aforementioned Spanish team utilized near-infrared hyperspectral imaging to detect basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), emphasizing robust statistical feature extraction. This approach not only improved system stability but also maintained high detection accuracy despite noise and outliers.


高光譜技術在皮膚檢測中的實現:構建高效系統與魯棒模型

上圖:使用每個樣本在各個波長上的中位數值所得到的魯棒特征。

下圖:使用平方根的雙權重中方差作為每個樣本變異度的測量方法,得到這些樣本的魯棒偏差。

Top: Robust features derived from median values of each sample across wavelengths.

Bottom: Robust deviations calculated using the square root of the biweight midvariance (√BWMV) as a measure of variability.


此外,他們在另一個實驗中重點關注BCC、SCC和AK(光化性角化病)與健康皮膚的差異,同樣采用了魯棒統計方法,同時還使用多變量統計分析進行樣本間的比較,以發現數據中潛在的差異。

In another experiment, the team examined differences among BCC, SCC, actinic keratosis (AK), and healthy skin, again applying robust statistics alongside multi-variate analysis to uncover subtle data variations.


高光譜技術在皮膚檢測中的實現:構建高效系統與魯棒模型

在本研究中通過多種方法確定的最佳定義窗口。虛線垂直線所劃定的區域標記了573.45nm至779.88nm之間最終感興趣的窗口。

Optimal spectral window (573.45–779.88 nm, marked by dashed vertical lines) identified through multiple methods in this study.


高光譜技術在皮膚檢測中的實現:構建高效系統與魯棒模型

每個樣本的高光譜特征。(a)魯棒特征標記了中央傾向以及5%和95%百分位置信區間(下線和上線分別)。(b)√BWMV計算表示魯棒樣本方差。

Hyperspectral features of each sample. (a) Robust features indicating central tendency with 5% and 95% percentile confidence intervals (lower and upper bounds, respectively). (b) √BWMV representing robust sample variance.


綜上所述,高光譜成像技術在皮膚檢測中展現出了優勢,尤其是在系統構建與模型泛化能力方面。通過選擇適宜的波長范圍,結合先進的數據分析技術,我們的高光譜相機在皮膚疾病早期檢測中提供了堅實的基礎。

值得一提的是,我們公司不僅銷售高光譜相機,還能提供專業的硬件技術支持,助力您的研究與應用提升效率。未來,隨著高光譜成像技術與機器學習的深度融合,該領域必將迎來更多機會,相信皮膚癌的早期檢測將變得更加高效和可靠,為患者帶來更大的福音。

Hyperspectral imaging demonstrates unique advantages in skin detection, particularly in system design and model generalization. By selecting optimal wavelength ranges and integrating advanced analytics, hyperspectral cameras provide a robust foundation for early skin disease diagnosis.

Notably, our company not only supplies hyperspectral cameras but also offers expert hardware support to enhance research and application efficiency. As hyperspectral imaging and machine learning continue to converge, this field holds immense promise—ushering in more efficient, reliable early detection of skin cancer and greater benefits for patients.


案例來源 / Source:

1. Courtenay LA, González-Aguilera D, Lagüela S, Del Pozo S, Ruiz-Mendez C, Barbero-García I, Román-Curto C, Ca?ueto J, Santos-Durán C, Carde?oso-álvarez ME, Roncero-Riesco M, Hernandez-Lopez D, Guerrero-Sevilla D, Rodríguez-Gonzalvez P. Hyperspectral imaging and robust statistics in non-melanoma skin cancer analysis. Biomed Opt Express. 2021 Jul 20;12(8):5107-27. doi: 10.1364/BOE.428143. PMID: 34513245; PMCID: PMC8407807.

2. Courtenay LA, Barbero-García I, Martínez-Lastras S, Del Pozo S, Corral de la Calle M, Garrido A, Guerrero-Sevilla D, Hernandez-Lopez D, González-Aguilera D. Near-infrared hyperspectral imaging and robust statistics for in vivo non-melanoma skin cancer and actinic keratosis characterisation. PLoS One. 2024 Apr 25;19(4):e0300400. doi: 10.1371/journal.pone.0300400. PMID: 38662718; PMCID: PMC11045066.

3. Aloupogianni E, Ishikawa M, Kobayashi N, Obi T. Hyperspectral and multispectral image processing for gross-level tumor detection in skin lesions: a systematic review. J Biomed Opt. 2022 Jun 8;27(6):060901. doi: 10.1117/1.JBO.27.6.060901.




 

Contact Us
  • 客服熱線:400-688-7769
  • 郵箱:market@exponentsci.com
  • 固話:020-89858550
  • 地址:廣州市天河區廣汕二路602號惠誠大廈B座403房

掃一掃  微信咨詢

©2025 愛博能(廣州)科學技術有限公司 版權所有    備案號:粵ICP備20046466號    技術支持:化工儀器網    Sitemap.xml    總訪問量:75443    管理登陸

主站蜘蛛池模板: 粉嫩小泬无遮挡久久久久久| 亚洲欧美日韩中字视频三区| 国内精品久久久久久久影视麻豆| 天堂а√在线中文在线新版| 亚洲午夜精品a片久久www慈禧| 久久夜色撩人精品国产| 国产成人片无码视频在线观看| 大色综合色综合网站| 玩成熟老熟女视频| 伊人久久综合热线大杳蕉| 成在线人视频免费视频| 国产精品99久久久久久猫咪| 久久青草成人综合网站| 亚洲国产成人精品女人久久久| 欧美三级韩国三级日本三斤 | 日韩中文高清在线专区| 香蕉大美女天天爱天天做| 日韩人妻无码精品久久| 国产成人无码a区精油按摩| 亚洲日产无码中文字幕| 欧美成人精品三级在线观看| 人妻熟女αⅴ一区二区三区| 国产在线精品成人一区二区| 日本添下边视频全过程| av国产剧情md精品麻豆| 国产免费又黄又爽又色毛| 久久这里只精品热在线18| 亚洲精品欧美精品日韩精品| 台湾无码一区二区| 亚洲精品国产精品乱码不卡√| 亚洲国产另类久久久精品网站 | 午夜视频久久久久一区| 亚洲中文字幕在线观看| 四虎国产精品亚洲一区久久特色| 国产av区男人的天堂| 成·人免费午夜无码视频| 久久精品视频在线看99| 日产精品久久久久久久蜜臀| 一本加勒比hezyo无码专区| 蜜桃少妇av久久久久久久| 黄色国产视频|